
Package: potools (via r-universe)
June 21, 2024

Type Package

Title Tools for Internationalization and Portability in R Packages

Version 0.2.4

Description Translating messages in R packages is managed using the po
top-level directory and the 'gettext' program. This package
provides some helper functions for building this support in R
packages, e.g. common validation & I/O tasks.

License GPL-3

URL https://github.com/MichaelChirico/potools,

https://michaelchirico.github.io/potools/

BugReports https://github.com/MichaelChirico/potools/issues

Depends R (>= 4.0.0)

Imports data.table, glue

Suggests crayon, knitr, rmarkdown, testthat (>= 3.1.5), withr

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

SystemRequirements gettext

Repository https://michaelchirico.r-universe.dev

RemoteUrl https://github.com/michaelchirico/potools

RemoteRef HEAD

RemoteSha 0dc529285c4f54a86d0755317d9304d735c3858f

1

https://github.com/MichaelChirico/potools
https://michaelchirico.github.io/potools/
https://github.com/MichaelChirico/potools/issues

2 check_cracked_messages

Contents
check_cracked_messages . 2
check_potools_sys_reqs . 3
check_untranslated_cat . 4
check_untranslated_src . 5
get_message_data . 6
po_compile . 8
po_create . 9
po_explain_plurals . 9
po_extract . 10
po_update . 11
translate_package . 11
write_po_file . 17

Index 21

check_cracked_messages

Check for cracked messages more suitable for templating

Description

Diagnose the R messages in a package to discover the presence of "cracked" messages better served
for translation by templating. See Details.

Usage

check_cracked_messages(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

Error messages built like stop("You gave ", n, " arguments, but ", m, " are needed.") are in
general hard for translators – the correct translation may be in a totally different order (e.g., this is
often the case for Japanese). It is preferable instead to use base::gettextf() to build a templated
message like stop(gettextf("You gave %d arguments but %d are needed.", n, m)). Transla-
tors are then free to rearrange the template to put the numeric pattern where it fits most naturally in
the target language.

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.

check_potools_sys_reqs 3

Author(s)

Michael Chirico

See Also

translate_package(), update_pkg_po()

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(tmp_pkg)

now, diagnose the messages for any "cracked" ones
check_cracked_messages(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

check_potools_sys_reqs

Check if the proper system utilities for running package translation are
installed

Description

potools uses the same gettext command line tools that R itself does to run translation. These are
required for translation to work properly; this function is mainly for testing use & checks whether
the current environment is equipped for translation.

Usage

check_potools_sys_reqs(which = SYSTEM_REQUIREMENTS)

Arguments

which Which requirements to test for. Defaults to all of the command-line utilities on
which potools relies, namely,

• msgmerge

• msgfmt

• msginit

• msgconv

4 check_untranslated_cat

Details

Specifically, potools relies on these command-line utilities:

Value

TRUE if the system is ready for translation, otherwise a message suggesting how to proceed.

Author(s)

Michael Chirico

See Also

tools::update_pkg_po()

check_untranslated_cat

Check for untranslated messages emitted by cat

Description

Diagnose the R messages in a package to discover the presence of messages emitted by cat()
which haven’t been translated (i.e., passed through gettext(), gettextf(), or ngettext()).

Usage

check_untranslated_cat(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

The function cat is commonly used to emit messages to users (e.g., for a verbose mode), but it
is not equipped for translation. Instead, messages must first be translated and then emitted. Any
character literals found in the package’s R code used in cat but not translated will be flagged by
this function.

For flagged calls, a potential replacement is offered, built using gettext or gettextf (depending
on whether one or more ... arguments are supplied to cat). For the gettextf case, the suggested
template is always %s (string) since this works for all inputs; the author should tighten this to the
appropriate sprintf() template marker as appropriate, for example if the author knows the input
is an integer, use %d or %i instead of %s.

NB: not all cat calls are included – in particular, no cat call specifying a non-default file are
flagged, nor are any where the supplied sep is not a character literal (e.g., sep=x instead of sep="")

check_untranslated_src 5

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.

Author(s)

Michael Chirico

See Also

translate_package(), update_pkg_po()

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(tmp_pkg)

now, diagnose the messages for any untranslated strings shown through cat()
check_untranslated_cat(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

check_untranslated_src

Check for cracked messages in C/C++ sources

Description

Diagnose the C/C++ messages in a package to discover untranslated messages

Usage

check_untranslated_src(message_data)

Arguments

message_data A data.table, or object convertible to one.

Details

This diagnostic looks for literal char arrays passed to messaging functions (as identified by translate_package())
which are not marked for translation (by tagging them for translation with _ or N_ macros). These
strings cannot be translated until they are so marked.

6 get_message_data

Value

A data.table with columns call, file, line_number, and replacement summarizing the results.
replacement is NA at this time, i.e., no replacement is provided.

Author(s)

Michael Chirico

See Also

translate_package(), update_pkg_po()

Examples

pkg <- file.path(system.file(package = 'potools'), 'pkg')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

first, extract message data
message_data = get_message_data(

tmp_pkg,
custom_translation_functions = list(src = "ReverseTemplateMessage:2")

)

now, diagnose the messages for any untranslated messages in C/C++
check_untranslated_src(message_data)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg, message_data)

get_message_data Extract user-visible messages from a package

Description

This function looks in the R and src directories of a package for user-visible messages and compiles
them as a data.table::data.table() to facilitate analyzing this corpus as such.

Usage

get_message_data(
dir = ".",
custom_translation_functions = list(R = NULL, src = NULL),
style = NULL,
verbose = !is_testing()

)

get_message_data 7

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

custom_translation_functions

A list with either/both of two components, R and src, together governing how
to extract any non-standard strings from the package.
See Details in translate_package().

style Translation style, either "base" or "explict". The default, NULL, reads from
the DESCRIPTION field Config/potools/style so you can specify the style
once for your package.
Both styles extract strings explicitly flagged for translation with gettext() or
ngettext(). The base style additionally extracts strings in calls to stop(),
warning(), and message(), and to stopf(), warningf(), and messagef() if
you have added those helpers to your package. The explicit style also accepts
tr_() as a short hand for gettext(). See vignette("developer") for more
details.

verbose Logical, default TRUE (except during testing). Should extra information about
progress, etc. be reported?

Value

A data.table with the following schema:

• message_source: character, either "R" or "src", saying whether the string was found in
the R or the src folder of the package

• type: character, either "singular" or "plural"; "plural" means the string came from
ngettext() and can be pluralized

• file: character, the file where the string was found

• msgid: character, the string (character literal or char array as found in the source); missing
for all type == "plural" strings

• msgid_plural: list(character, character), the strings (character literals or char arrays
as found in the source); the first applies in English for n=1 (see ngettext), while the second
applies for n!=1; missing for all type == "singular" strings

• call: character, the full call containing the string that was found

• line_number: integer, the line in file where the string was found

• is_repeat: logical, whether the msgid is a duplicate within this message_source

• is_marked_for_translation:logical, whether the string is marked for translation (e.g., in
R, all character literals supplied to a ... argument in stop() are so marked)

• is_templated, logical, whether the string is templatable (e.g., uses %s or other formatting
markers)

Author(s)

Michael Chirico

8 po_compile

See Also

translate_package(), write_po_file()

Examples

pkg <- system.file('pkg', package = 'potools')
get_message_data(pkg)

includes strings provided to the custom R wrapper function catf()
get_message_data(pkg, custom_translation_functions = list(R = "catf:fmt|1"))

includes untranslated strings provided to the custom
C/C++ wrapper function ReverseTemplateMessage()
get_message_data(

pkg,
custom_translation_functions = list(src = "ReverseTemplateMessage:2")

)

cleanup
rm(pkg)

po_compile Compile .po files to .mo

Description

This function compiles the plain text .po files that translators work with into the binary .mo files
that are installed with packages and used for live translations.

Usage

po_compile(dir = ".", package = NULL, lazy = TRUE, verbose = TRUE)

Arguments

dir Path to package root directory.

package Name of package. If not supplied, read from DESCRIPTION.

lazy If TRUE, only .mo functions that are older than .po files be updated

verbose If TRUE, print information as it goes.

po_create 9

po_create Create a new .po file

Description

po_create() creates a new po/{languages}.po containing the messages to be translated.

Generally, we expect you to use po_create() to create new .po files but if you call it with an
existing translation, it will update it with any changes from the .pot. See po_update() for details.

Usage

po_create(languages, dir = ".", verbose = !is_testing())

Arguments

languages Language identifiers. These are typically two letters (e.g. "en" = English, "fr"
= French, "es" = Spanish, "zh" = Chinese), but can include an additional suffix
for languages that have regional variations (e.g. "fr_CN" = French Canadian,
"zh_CN" = simplified characters as used in mainland China, "zh_TW" = tradi-
tional characters as used in Taiwan.)

dir Character, default the present directory; a directory in which an R package is
stored.

verbose Logical, default TRUE (except during testing). Should extra information about
progress, etc. be reported?

po_explain_plurals Explain plural message criteria verbally

Description

The nplural syntax in .po file metadata can be hard to grok, even for native speakers. This function
tries to de-mystify this by providing verbal expressions of which numbers apply to which index in
the msgstr array.

Usage

po_explain_plurals(language, index)

Arguments

language A single locale code. See translate_package() for details.

index Optional. If supplied, a 0-based index to explain for a given language. If not
supplied, all plurals for the supplied language are described.

10 po_extract

po_extract Extract messages for translation into a .pot file

Description

po_extract() scans your package for strings to be translated and saves them into a .pot template
file (in the package’s po directory). You should never modify this file by hand; instead modify the
underlying source code and re-run po_extract().

If you have existing translations, call po_update() after po_extract() to update them with the
changes.

Usage

po_extract(
dir = ".",
custom_translation_functions = list(),
verbose = !is_testing(),
style = NULL

)

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

custom_translation_functions

A list with either/both of two components, R and src, together governing how
to extract any non-standard strings from the package.
See Details in translate_package().

verbose Logical, default TRUE (except during testing). Should extra information about
progress, etc. be reported?

style Translation style, either "base" or "explict". The default, NULL, reads from
the DESCRIPTION field Config/potools/style so you can specify the style
once for your package.
Both styles extract strings explicitly flagged for translation with gettext() or
ngettext(). The base style additionally extracts strings in calls to stop(),
warning(), and message(), and to stopf(), warningf(), and messagef() if
you have added those helpers to your package. The explicit style also accepts
tr_() as a short hand for gettext(). See vignette("developer") for more
details.

Value

The extracted messages as computed by get_message_data(), invisibly.

po_update 11

po_update Update all .po files with changes in .pot

Description

po_update() updates existing .po file after the .pot file has changed. There are four cases:

• New messages: added with blank msgstr.
• Deleted messages: marked as deprecated and moved to the bottom of the file.
• Major changes to existing messages: appear as an addition and a deletion.
• Minor changes to existing messages: will be flagged as fuzzy.

#, fuzzy, c-format
#| msgid "Generating en@quot translations"
msgid "Updating '%s' %s translation"
msgstr "memperbarui terjemahan bahasa en@quot..."

The previous message is given in comments starting with #|. Translators need to update the
actual (uncommented) msgstr manually, using the old msgid as a potential reference, then
delete the old translation and the fuzzy comment (c-format should remain, if present).

Usage

po_update(dir = ".", lazy = TRUE, verbose = !is_testing())

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

lazy If TRUE, only .po files that are older than their corresponding .pot file will be
updated.

verbose Logical, default TRUE (except during testing). Should extra information about
progress, etc. be reported?

translate_package Interactively provide translations for a package’s messages

Description

This function handles the "grunt work" of building and updating translation libraries. In addition to
providing a friendly interface for supplying translations, some internal logic is built to help make
your package more translation-friendly.

To get started, the package developer should run translate_package() on your package’s source
to produce a template .pot file (or files, if your package has both R and C/C++ messages to trans-
lated), e.g.

To add translations in your desired language, include the target language: in the translate_package(languages
= "es") call.

12 translate_package

Usage

translate_package(
dir = ".",
languages = NULL,
diagnostics = list(check_cracked_messages, check_untranslated_cat,
check_untranslated_src),

custom_translation_functions = list(R = NULL, src = NULL),
max_translations = Inf,
use_base_rules = package %chin% .potools$base_package_names,
copyright = NULL,
bugs = "",
verbose = !is_testing()

)

Arguments

dir Character, default the present directory; a directory in which an R package is
stored.

languages Character vector; locale codes to which to translate. Must be a valid language
accepted by gettext. This almost always takes the form of (1) an ISO 639 2-
letter language code; or (2) ll_CC, where ll is an ISO 639 2-letter language
code and CC is an ISO 3166 2-letter country code e.g. es for Spanish, es_AR for
Argentinian Spanish, ro for Romanian, etc. See base::Sys.getlocale() for
some helpful tips about how to tell which locales are currently available on your
machine, and see the References below for some web resources listing more
locales.

diagnostics A list of diagnostic functions to be run on the package’s message data. See
Details.

custom_translation_functions

A list with either/both of two components, R and src, together governing how
to extract any non-standard strings from the package. See Details.

max_translations

Numeric; used for setting a cap on the number of translations to be done for
each language. Defaults to Inf, meaning all messages in the package.

use_base_rules Logical; Should internal behavior match base behavior as strictly as possible?
TRUE if being run on a base package (i.e., base or one of the default packages
like utils, graphics, etc.). See Details.

copyright Character; passed on to write_po_file().

bugs Character; passed on to write_po_file().

verbose Logical, default TRUE (except during testing). Should extra information about
progress, etc. be reported?

Value

This function returns nothing invisibly. As a side effect, a ‘.pot’ file is written to the package’s
‘po’ directory (updated if one does not yet exist, or created from scratch otherwise), and a ‘.po’ file
is written in the same directory for each element of languages.

translate_package 13

Phases

translate_package() goes through roughly three "phases" of translation.

1. Setup – dir is checked for existing translations (toggling between "update" and "new" modes),
and R files are parsed and combed for user-facing messages.

2. Diagnostics: see the Diagnostics section below. Any diagnostic detecting "unhealthy" mes-
sages will result in a yes/no prompt to exit translation to address the issues before continuing.

3. Translation. All of the messages found in phase one are iterated over – the user is shown a
message in English and prompted for the translation in the target language. This process is
repeated for each domain in languages.

An attempt is made to provide hints for some translations that require special care (e.g. that have
escape sequences or use templates). For templated messages (e.g., that use %s), the user-provided
message must match the templates of the English message. The templates don’t have to be in the
same order – R understands template reordering, e.g. %2$s says "interpret the second input as a
string". See sprintf() for more details.

After each language is completed, a corresponding ‘.po’ file is written to the package’s ‘po’ direc-
tory (which is created if it does not yet exist).

There are some discrepancies in the default behavior of translate_package and the translation
workflow used to generate the ‘.po’/‘.pot’ files for R itself (mainly, the suite of functions from
tools, tools::update_pkg_po(), tools::xgettext2pot(), tools::xgettext(), and tools::xngettext()).
They should only be superficial (e.g., whitespace or comments), but nevertheless may represent a
barrier to smoothly submitting patchings to R Core. To make the process of translating base R and
the default packages (tools, utils, stats, etc.) as smooth as possible, set the use_base_rules
argument to TRUE and your resulting ‘.po’/‘.pot’/‘.mo’ file will match base’s.

Custom translation functions

base R provides several functions for messaging that are natively equipped for translation (they all
have a domain argument): stop(), warning(), message(), gettext(), gettextf(), ngettext(),
and packageStartupMessage().

While handy, some developers may prefer to write their own functions, or to write wrappers of the
provided functions that provide some enhanced functionality (e.g., templating or automatic wrap-
ping). In this case, the default R tooling for translation (xgettext(), xngettext() xgettext2pot(),
update_pkg_po() from tools) will not work, but translate_package() and its workhorse get_message_data()
provide an interface to continue building translations for your workflow.

Suppose you wrote a function stopf() that is a wrapper of stop(gettextf()) used to build tem-
plated error messages in R, which makes translation easier for translators (see below), e.g.:

stopf = function(fmt, ..., domain = NULL) {
stop(gettextf(fmt, ...), domain = domain, call. = FALSE)

}

Note that potools itself uses just such a wrapper internally to build error messages! To extract
strings from calls in your package to stopf() and mark them for translation, use the argument
custom_translation_functions:

14 translate_package

get_message_data(
'/path/to/my_package',
custom_translation_functions = list(R = 'stopf:fmt|1')

)

This invocation tells get_message_data() to look for strings in the fmt argument in calls to
stopf(). 1 indicates that fmt is the first argument.

This interface is inspired by the --keyword argument to the xgettext command-line tool. This
argument consists of a list with two components, R and src (either can be excluded), owing to
differences between R and C/C++. Both components, if present, should consist of a character
vector.

For R, there are two types of input: one for named arguments, the other for unnamed arguments.

• Entries for named arguments will look like "fname:arg|num" (singular string) or "fname:arg1|num1,arg2|num2"
(plural string). fname gives the name of the function/call to be extracted from the R source,
arg/arg1/arg2 specify the name of the argument to fname from which strings should be ex-
tracted, and num/num1/num2 specify the order of the named argument within the signature of
fname.

• Entries for unnamed arguments will look like "fname:...\xarg1,...,xargn", i.e., fname,
followed by :, followed by ... (three dots), followed by a backslash (\), followed by a
comma-separated list of argument names. All strings within calls to fname except those sup-
plied to the arguments named among xarg1, ..., xargn will be extracted.

To clarify, consider the how we would (redundantly) specify custom_translation_functions for
some of the default messagers, gettext, gettextf, and ngettext: custom_translation_functions
= list(R = c("gettext:...\domain", "gettextf:fmt|1", "ngettext:msg1|2,msg2|3")).

For src, there is only one type of input, which looks like "fname:num", which says to look at the
num argument of calls to fname for char arrays.

Note that there is a difference in how translation works for src vs. R – in R, all strings passed to
certain functions are considered marked for translations, but in src, all translatable strings must be
explicitly marked as such. So for src translations, custom_translation_functions is not used
to customize which strings are marked for translation, but rather, to expand the set of calls which
are searched for potentially untranslated arrays (i.e., arrays passed to the specified calls that are not
explicitly marked for translation). These can then be reported in the check_untranslated_src()
diagnostic, for example.

Diagnostics

Cracked messages:
A cracked message is one like:

stop("There are ", n, " good things and ", m, " bad things.")

In its current state, translators will be asked to translate three messages independently:

• "There are"
• "good things and"
• "bad things."

translate_package 15

The message has been cracked; it might not be possible to translate a string as generic as "There
are" into many languages – context is key!
To keep the context, the error message should instead be build with gettextf like so:

stop(domain=NA, gettextf("There are %d good things and %d bad things."))

Now there is only one string to translate! Note that this also allows the translator to change the
word order as they see fit – for example, in Japanese, the grammatical order usually puts the verb
last (where in English it usually comes right after the subject).
translate_package detects such cracked messages and suggests a gettextf-based approach to
fix them.

Untranslated R messages produced by cat():
Only strings which are passed to certain base functions are eligible for translation, namely stop,
warning, message, packageStartupMessage, gettext, gettextf, and ngettext (all of which
have a domain argument that is key for translation).
However, it is common to also produce some user-facing messages using cat – if your package
does so, it must first use gettext or gettextf to translate the message before sending it to the
user with cat.
translate_package detects strings produced with cat and suggests a gettext- or gettextf-
based fix.

Untranslated C/C++ messages:
This diagnostic detects any literal char arrays provided to common messaging functions in C/C++,
namely ngettext(), Rprintf(), REprintf(), Rvprintf(), REvprintf(), R_ShowMessage(),
R_Suicide(), warning(), Rf_warning(), error(), Rf_error(), dgettext(), and snprintf().
To actually translate these strings, pass them through the translation macro _.
NB: Translation in C/C++ requires some additional #includes and declarations, including defin-
ing the _ macro. See the Internationalization section of Writing R Extensions for details.

Custom diagnostics

A diagnostic is a function which takes as input a data.table summarizing the translatable strings
in a package (e.g. as generated by get_message_data()), evaluates whether these messages are
"healthy" in some sense, and produces a digest of "unhealthy" strings and (optionally) suggested
replacements.

The diagnostic function must have an attribute named diagnostic_tag that describes what the di-
agnostic does; it is reproduced in the format Found {nrow(result)} {diagnostic_tag}:. For ex-
ample, check_untranslated_cat() has diagnostic_tag = "untranslated messaging calls passed
through cat()".

The output diagnostic result has the following schema:

• call: character, the call identified as problematic

• file: character, the file where call was found

• line_number: integer, the line in file where call was found

• replacement: character, optional, a suggested fix to make the call "healthy"

See check_cracked_messages(), check_untranslated_cat(), and check_untranslated_src()
for examples of diagnostics.

16 translate_package

Author(s)

Michael Chirico

References

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Internationalization-in-the-R-sources
https://developer.r-project.org/Translations30.html
https://web.archive.org/web/20230108213934/https://www.isi-web.org/resources/glossary-of-statistical-terms
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#
Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Country-Codes.html#Country-Codes
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://saimana.com/list-of-country-locale-code/

See Also

get_message_data(), write_po_file(), tools::xgettext(), tools::update_pkg_po(), tools::checkPoFile(),
base::gettext()

Examples

pkg <- system.file('pkg', package = 'potools')
copy to a temporary location to be able to read/write/update below
tmp_pkg <- file.path(tempdir(), "pkg")
dir.create(tmp_pkg)
file.copy(pkg, dirname(tmp_pkg), recursive = TRUE)

run translate_package() without any languages
this will generate a .pot template file and en@quot translations (in UTF-8 locales)
we can also pass empty 'diagnostics' to skip the diagnostic step
(skip if gettext isn't available to avoid an error)
if (isTRUE(check_potools_sys_reqs)) {

translate_package(tmp_pkg, diagnostics = NULL)
}

Not run:
launches the interactive translation dialog for translations into Estonian:
translate_package(tmp_pkg, "et_EE", diagnostics = NULL, verbose = TRUE)

End(Not run)

cleanup
unlink(tmp_pkg, recursive = TRUE)
rm(pkg, tmp_pkg)

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Internationalization
https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Internationalization-in-the-R-sources
https://developer.r-project.org/Translations30.html
https://web.archive.org/web/20230108213934/https://www.isi-web.org/resources/glossary-of-statistical-terms
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Usual-Language-Codes.html#Usual-Language-Codes
https://www.gnu.org/software/gettext/manual/html_node/Country-Codes.html#Country-Codes
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://saimana.com/list-of-country-locale-code/

write_po_file 17

write_po_file Write a .po or .pot file corresponding to a message database

Description

Serialize a message database in the ‘.po’ and ‘.pot’ formats recognized by the gettext ecosystem.

Usage

write_po_file(
message_data,
po_file,
metadata,
width = 79L,
wrap_at_newline = TRUE,
use_base_rules = metadata$package %chin% .potools$base_package_names

)

po_metadata(
package = "",
version = "",
language = "",
author = "",
email = "",
bugs = "",
copyright = NULL,
...

)

S3 method for class 'po_metadata'
format(x, template = FALSE, use_plurals = FALSE, ...)

S3 method for class 'po_metadata'
print(x, ...)

Arguments

message_data data.table, as returned from get_message_data(). NB: R creates separate
domains for R and C/C++ code; it is recommended you do the same by filtering
the get_message_data output for message_source == "R" or message_source
== "src". Other approaches are untested.

po_file Character vector giving a destination path. Paths ending in ‘.pot’ will be written
with template files (e.g., msgstr entries will be blanked).

metadata A po_metadata object as returned by po_metadata().
width Numeric governing the wrapping width of the output file. Default is 79L to

match the behavior of the xgettext utility. Inf turns off wrapping (except for
file source markers comments).

18 write_po_file

wrap_at_newline

Logical, default TRUE to match the xgettext utility’s behavior. If TRUE, any
msgid or msgstr will always be wrapped at an internal newline (i.e., literally
matching \n).

use_base_rules Logical; Should internal behavior match base behavior as strictly as possible?
TRUE if being run on a base package (i.e., base or one of the default packages
like utils, graphics, etc.). See Details.

package Character; the name of the package being translated.

version Character; the version of the package being translated.

language Character; the language of the msgstr. See translate_package() for details.

author Character; an author (combined with email) to whom to attribute the transla-
tions (as Last-Translator).

email Character; an e-mail address associated with author.

bugs Character; a URL where issues with the translations can be reported.

copyright An object used to construct the initial Copyright reference in the output. If NULL,
no such comment is written. If a list, it should the following structure:

• year: Required, A year or hyphen-separated range of years
• holder: Required, The name of the copyright holder
• title: Optional, A title for the ‘.po’
• additional: Optional, A character vector of additional lines for the copy-

right comment section

If a character scalar, it is interpreted as the holder and the year is set as the
POT-Creation-Date’s year.

... Additional (named) components to add to the metadata. For print.po_metadata,
passed on to format.po_metadata

x A po_metadata object.

template Logical; format the metadata as in a ‘.pot’ template?

use_plurals Logical; should the Plural-Forms entry be included?

Details

Three components are set automatically if not provided:

• pot_timestamp - A POSIXct used to write the POT-Creation-Date entry. Defaults to the
Sys.time() at run time.

• po_timestamp - A POSIXct used to write the PO-Revision-Date entry. Defaults to be the
same as pot_timestamp.

• language_team - A string used to write the Language-Team entry. Defaults to be the same as
language; if provided manually, the format LANGUAGE <LL@li.org> is recommended.

The charset for output is always set to "UTF-8"; this is intentional to make it more cumbersome
to create non-UTF-8 files.

write_po_file 19

Value

For po_metadata, an object of class po_metadata that has a format method used to serialize the
metadata.

Author(s)

Michael Chirico

References

https://www.gnu.org/software/gettext/manual/html_node/Header-Entry.html

See Also

translate_package(), get_message_data(), tools::xgettext2pot(), tools::update_pkg_po()

Examples

message_data <- get_message_data(system.file('pkg', package='potools'))
desc_data <- read.dcf(system.file('pkg', 'DESCRIPTION', package='potools'), c('Package', 'Version'))
metadata <- po_metadata(

package = desc_data[, "Package"], version = desc_data[, "Version"],
language = 'ar_SY', author = 'R User', email = 'ruser@gmail.com',
bugs = 'https://github.com/ruser/potoolsExample/issues'

)

add fake translations
message_data[type == "singular", msgstr := "<arabic translation>"]
Arabic has 6 plural forms
message_data[type == "plural", msgstr_plural := .(as.list(sprintf("<%d translation>", 0:5)))]

Preview metadata
print(metadata)
write .po file
write_po_file(

message_data[message_source == "R"],
tmp_po <- tempfile(fileext = '.po'),
metadata

)
writeLines(readLines(tmp_po))

write .pot template
write_po_file(

message_data[message_source == "R"],
tmp_pot <- tempfile(fileext = '.pot'),
metadata

)
writeLines(readLines(tmp_pot))

cleanup
file.remove(tmp_po, tmp_pot)

https://www.gnu.org/software/gettext/manual/html_node/Header-Entry.html

20 write_po_file

rm(message_data, desc_data, metadata, tmp_po, tmp_pot)

Index

base::gettext(), 16
base::gettextf(), 2
base::Sys.getlocale(), 12

cat(), 4
check_cracked_messages, 2
check_cracked_messages(), 15
check_potools_sys_reqs, 3
check_untranslated_cat, 4
check_untranslated_cat(), 15
check_untranslated_src, 5
check_untranslated_src(), 14, 15

data.table::data.table(), 6

format.po_metadata (write_po_file), 17

get_message_data, 6
get_message_data(), 10, 15–17, 19
gettext(), 4
gettextf(), 4

ngettext(), 4, 7

po_compile, 8
po_create, 9
po_explain_plurals, 9
po_extract, 10
po_extract(), 10
po_metadata (write_po_file), 17
po_update, 11
po_update(), 9, 10
print.po_metadata (write_po_file), 17

sprintf(), 4, 13
stop(), 7
Sys.time(), 18

tools::checkPoFile(), 16
tools::update_pkg_po(), 4, 13, 16, 19
tools::xgettext(), 13, 16

tools::xgettext2pot(), 13, 19
tools::xngettext(), 13
translate_package, 11
translate_package(), 3, 5–10, 18, 19

update_pkg_po(), 3, 5, 6

write_po_file, 17
write_po_file(), 8, 12, 16

21

	check_cracked_messages
	check_potools_sys_reqs
	check_untranslated_cat
	check_untranslated_src
	get_message_data
	po_compile
	po_create
	po_explain_plurals
	po_extract
	po_update
	translate_package
	write_po_file
	Index

